ERK-GluR1 phosphorylation in trigeminal spinal subnucleus caudalis neurons is involved in pain associated with dry tongue

نویسندگان

  • Yuka Nakaya
  • Yoshiyuki Tsuboi
  • Akiko Okada-Ogawa
  • Masamichi Shinoda
  • Asako Kubo
  • Jui Yen Chen
  • Noboru Noma
  • Dulguun Batbold
  • Yoshiki Imamura
  • Barry J Sessle
  • Koichi Iwata
چکیده

BACKGROUND Dry mouth is known to cause severe pain in the intraoral structures, and many dry mouth patients have been suffering from intraoral pain. In development of an appropriate treatment, it is crucial to study the mechanisms underlying intraoral pain associated with dry mouth, yet the detailed mechanisms are not fully understood. To evaluate the mechanisms underlying pain related to dry mouth, the dry-tongue rat model was developed. Hence, the mechanical or heat nocifensive reflex, the phosphorylated extracellular signal-regulated kinase and phosphorylated GluR1-IR immunohistochemistries, and the single neuronal activity were examined in the trigeminal spinal subnucleus caudalis of dry-tongue rats. RESULTS The head-withdrawal reflex threshold to mechanical, but not heat, stimulation of the tongue was significantly decreased on day 7 after tongue drying. The mechanical, but not heat, responses of trigeminal spinal subnucleus caudalis nociceptive neurons were significantly enhanced in dry-tongue rats compared to sham rats on day 7. The number of phosphorylated extracellular signal-regulated kinase-immunoreactive cells was also significantly increased in the trigeminal spinal subnucleus caudalis following noxious stimulation of the tongue in dry-tongue rats compared to sham rats on day 7. The decrement of the mechanical head-withdrawal reflex threshold (HWT) was reversed during intracisternal administration of the mitogen-activated protein kinase kinase 1 inhibitor, PD98059. The trigeminal spinal subnucleus caudalis neuronal activities and the number of phosphorylated extracellular signal-regulated kinase-immunoreactive cells following noxious mechanical stimulation of dried tongue were also significantly decreased following intracisternal administration of PD98059 compared to vehicle-administrated rats. Increased number of the phosphorylated GluR1-IR cells was observed in the trigeminal spinal subnucleus caudalis of dry-tongue rats, and the number of phosphorylated GluR1-IR cells was significantly reduced in PD98059-administrated rats compared to the vehicle-administrated tongue-dry rats. CONCLUSIONS These findings suggest that the pERK-pGluR1 cascade is involved in central sensitization of trigeminal spinal subnucleus caudalis nociceptive neurons, thus resulting in tongue mechanical hyperalgesia associated with tongue drying.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Involvement of peripheral ionotropic glutamate receptors in orofacial thermal hyperalgesia in rats

BACKGROUND The purpose of the present study was to elucidate the mechanisms that may underlie the sensitization of trigeminal spinal subnucleus caudalis (Vc) and upper cervical spinal cord (C1-C2) neurons to heat or cold stimulation of the orofacial region following glutamate (Glu) injection. RESULTS Glu application to the tongue or whisker pad skin caused an enhancement of head-withdrawal re...

متن کامل

Understanding the regional specificity of neurons in the trigeminal subnucleus caudalis and spinal dorsal horn

Neurons in the trigeminal subnucleus caudalis (Vc) and spinal cord dorsal horn (SDH) play important roles in modulating and relaying pain signals to the higher centers of the central nervous system (CNS). Morphologically, many aspects including a laminated structure, cytoarchitecture and cellular elements in these two central regions are very similar [1 ,2, 3, 4] . Most nociceptive afferents wi...

متن کامل

Modulation of trigeminal spinal subnucleus caudalis neuronal activity following regeneration of transected inferior alveolar nerve in rats.

Modulation of trigeminal spinal subnucleus caudalis neuronal activity following regeneration of transected inferior alveolar nerve in rats. To clarify the neuronal mechanisms of abnormal pain in the face innervated by the regenerated inferior alveolar nerve (IAN), nocifensive behavior, trigeminal ganglion neuronal labeling following Fluorogold (FG) injection into the mental skin, and trigeminal...

متن کامل

Involvement of ERK Phosphorylation of Trigeminal Spinal Subnucleus Caudalis Neurons in Thermal Hypersensitivity in Rats with Infraorbital Nerve Injury

To evaluate the involvement of the mitogen-activated protein kinase (MAPK) cascade in orofacial neuropathic pain mechanisms, this study assessed nocifensive behavior evoked by mechanical or thermal stimulation of the whisker pad skin, phosphorylation of extracellular signal-regulated kinase (ERK) in trigeminal spinal subnucleus caudalis (Vc) neurons, and Vc neuronal responses to mechanical or t...

متن کامل

[Neurobiology of trigeminal pain].

The brainstem trigeminal complex integrates somatosensory inputs from orofacial areas and meninges. Recent studies have shown the existence of a double representation of pain within the brainstem, at the level of both caudalis and oralis subnuclei. Noxious messages are mainly conveyed by C-fibers that activate the subnucleus caudalis neurons. These neurons in turn activate the subnucleus oralis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2016